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CFD -- The Third-Method of Science

(Kelly, 1998)

o Logic
o Experimentation
e Computer Simulation




Outline

Background
Biomechanics vs Mechanobiology
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D In diagnosis and therapy of vascular diseases
D In vascular tissue engineering

=D In cell mechanics

D In TCM (Traditional Chinese Medicine)



Fluid Mechanics vs
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Atherosclerosis (AS




(AS)

e ““response-to-injury hypothesis””(Ross, 1973):
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AS vs Hemodynamics

Fry (1968): High Shear Stress Hypothesis
Caro (1969): Low Shear Stress Hypothesis
Ku (1985): Low Oscillatory Shear Stress Hypothesis

Circumferential stress, flow separation, secondary flow,
turbulent flow(?), mass transfer

— Medline > 40,000 Papers Related to Atherosclerosis



Aneurysm vs Hemodynamics
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VE, VC
o AS: -->

— (angioplasty)
— (stenting)

— (grafting)



loplasty)




(stent/drug-coated stent)
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(Vein Grafting)
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(Vascular Grafts)
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Restenosis ( )
V.S. Hemodynamics

v" Shear stress (steady / pulsatile /
turbulent)

v" Shear stress gradient (flow
separation / secondary flow)

v' Circumferential stress

v Mass transfer (steady / pulsatile /
turbulent)

Flow rate

(ml / min)




Vascular Biomechani



(a) Loaded State

(b) Unloaded State

(c) Zero-stress Sate

17



DTUAINRDNY:
BEREBENEA
BERDEEO0N

BEEODEnNS
SO RPBBED
HESEDEDNE

Fung YC

18



W =0.5cexp(b,E; +b,E’ +b,E’ + 2b,E E, +2b.E E, +2b.E,E)

1
E=-(-1
1 2(| )

_or
" OR’

A




\

p—V Relationship of the Rat’s Carotid
\Artery

V(icm' )




21



Pulsatile Flow (Womersle
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- Fluid-Solid Coupling Prob
->FEM + CFD




Vascular Mechanobiol
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(Cell Proliferation)

® (Cell Death)
> (necrosis) Vs (apoptotic)
® (Cell-to-Cell Interactio
® (Production of Extrace

Matrix)



Tensile Stress and ECs
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Fluid Shear Stress and ECs
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Morphological response of ECs to
Laminar Shear Stress




orphological response of ECs to
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Endothelial Responses to Shear Stress

» Cell-shape modifications

» Cell-orientation modifications

» Cytoskeletal organization

» Mechanical stiffness modifications
» Cell proliferation

» Secretion of vasoactive substances
» Transendothelial transport

» Intracellular signaling
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Signal transduction cascade

External Signal

Exterior

-,

Interior

Signal Trahsduction

Internal Response

GETO RV

Signal Prbpagation

Signal Mechanotransduction in Endothelial Cells - p.873



Signal Transduction Cascade




Decentralization Model of Mechanotransduction
(Davies PF.,1995)
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Tensegrity-Model of Mechanotransduction
(Ingber DE. J. Cell Sci. 116,1157-1173, 2003)
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Brief Summary

» Background
¢ Biomechanics vs Mechanobiology



Applications of CFD in the Diagnosis and
Therapy of Cardiovascular Digeases




\Diagnosis of Cerebral

Vascular Diseases




Cerebral Vascular Hemodynamics

] 32 48 Wk

(CT/MRI)
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Inverse Problem
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Cerebral Vascular Hemodynamics
Analyzer
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ViVa: The Virtual \Vascular Project

o Initial Applications: Clinical research and
training
o Later Stage: Surgical planning




ViVa

Data Acquisition

Image Processing and Segmentation
Real-time 3-D Volume Visualization

3-D Geometry Reconstruction

3-D Mesh Generation

Blood Flow Simulation and Visualization
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1IVa: Overview
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ViVa: User interface of the image
processing and segmentation subsystem

___BALLOON DEMO
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IVa: Real-time 3-D VVolume Visualization
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ViVa: 3-D Geometry Reconstruction
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- ViVa: Blood Flow Simulation and
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ViVa in Japan (
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Multiscale Approach
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Coupling of 1D and 3D N-S Equation

time = (100 5 time = 001 5

time = 0,02 5

time = 0,026 s time = 0034 5




Applications of CFD in Vascular Tissue
Engineering



mue Engineering

-~ (gene therapy)
— (stenting)

—~ (angioplasty)




Stenting
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Bypass grafting (side-to-side)
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Grafting (end-to-side)

CFD, Steady Flow CFD, Pulsatile Flow
fai peak flowrate)
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eddy/votex
—~ low oscillatory shear stress
— circumferential stress



Applications of CFD in Cell hanics




» Design and Construction of Parallel- plate
Flow Chambers with Shear Stress



Rectangular Para 1elgowow Chamber




Rectangular Parallel-plate Flow Chamber

mAdvantage
mUniform Flow Field

mSingle sheamstress

mDisadvantage

mTime Consuming
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Flow Chamber with Shear Stress Gradients

heating plate

top plate

obstacle

. flowreversal ‘ flow recovery
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\Objecﬁves

» Design and construct new type flow chambers
with shear stress gradients

o Convenient and Time saving




Planforms-of the parallel-plate flow
chambers with shear stress gradients
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\Formulas

o Shear Stress

o Shear Stress Gradient




Distribution of shear stresses and shear stress
gradients on the bottom of the flow chamber
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Variation of shear stresses and
shear stress gradients along the
axlis of the flow chamber

Shear Stress(0.1Pa)
Shear Gradient(0.1Pa/cm)

length(cm)

71



Pulsatile Flow (Theoretical Results)
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Measurement System of Flow Fields
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Theoretical and-Experimental Velocities

QiR TANES FADM E4TRANMCE

=T

ELOw FhiL O

74



\me-plate Flow Chamber
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Resp%of ECs Simultaneously Exposed to

Wall Shear Stress and Circumferential Stress




Wall Shear Stress (WSS) &
Circumferential Stress (CS)
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In Vitro Apparatus
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Objectives

To establish a silicone tube flow system
that can mimic In vivo hemodynamic
conditions in blood vessels

To examine Ca?* responses of ECs
simultaneously exposed to CS and WSS
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\

Numerical-Device: Multi-scale Model
for a Silicone Tube Flow System
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Numerical Device: Effects of Pump Output
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Numerical Device: Effects of the Cp

(ATter-Ioad)
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Actual Device

Reservoir

Centrifugal
Pump
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Actual Device: Effects of the Cp & Rp
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Synergistic Effects of CS & WSS on ECs

Static f =< %= CSalone
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87



cium Signaling
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Glass Tube

Ca?* + HBSS +
500nM ATP

Ca?* free HBSS +
2mM EGTA+
500nM ATP

Ca’* Responses to WSS Alone
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Ca’* Responses to CS & WSS

Silicone Tube
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Conclusion
The silicone tube flow system can mimic in
vivo hemodynamic conditions in blood vessels

Ca’* responses of ECs are dependent.on WSS
rather than CS under physiological conditions
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Ca?** Oscillation
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Ca?** Wave
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CED in-Calcium Signaling (?)

Mechanical sthinulation

Fig. . Schematic diagram of the passive diffusion hypothesis tor
P .- . 2 . D
the propagation of intercellular Ca*®™ waves, [PR. IP; receptor/Ca
channel: ER, endoplasmic reticulum: GI, gap junction. The + sign
™ 2-' o - I+
denotles Ca™-induced Ca™ release.




Virtual-Cell (or E-Cell)

Reachon Manomn =lectncal Mapping

Structure Mapping Initial Conditions
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Applications of CFD in Traditional
Chinese Medicine







The Interstitial Fluid Flow In
Connective Tissue : The
-~ —Mechanism of Meridians in
}raditional Chinese
edicine

Ding Guanghong
Department of Mechanics a Science
Fudan University
Shanghai, China
Ghding@fudan.edu.cn



\Bmd:

Interstitial fluid is the surroundings that organism cells reside

Cells Environment

Mast Cells * Interstitial Fluid

AccV SpotMagn Det WD Exp —— 20um
200kv 50 1000x SE 104 1 X130 D6716 {Fudan University)

Electronic Microscope image of connective tissue in human ligam



Meridians: TCM Theory



Backgrouno:~~Experiment Results
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7% | Acupuncture
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20 FUTIJIN HOSPITAL
Ex:; 929 S 104 miao fei
Ser 102 M 40 185764
Surface Mo cut Mar 18 2004

OFOYv 20,0 cm
STANDARD
8991

[T R

Mo zshutter

kw 120

mA 100

1.8

1.2 mmHQA1, 2zp
Tilt: 0,0 =
01:19:12 PM P
Ld=265?L=22|3 I?E-

CT of human lower limb %




Physical Base of-Meridians

Acupuncture
needle

j N
interosseous membrane \ \

SE
TR:ED
1 TE:E
¢ IE:1/1 15,6
1 § I
QUADENEE
[UANIENEE Fov; s
FOV: P00 &1, 6thls0, dup
&1 Gtk dsp 10842
b F T I S S S— Loy
i 4 I a a
o ¥= 1T6L= 137

MRI of human lower limb




acupoint

Capillary vessel with parallel arrange in acupoiais
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The control equations In the porous medium
are Brinkman Equations:

Where is grads operator A s Laplace
operator, u is velocity, P is pressure, Kp iS$
Darcy osmosis.
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Capillary vessel wall

Osmosis velocity Out flow

Periodicity boundary condition

The flow velocity In the capillary vessel wall Is:

A RAp (__5)

H Ap

Where:
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Parameters

Physiological range

Blood in capillary vessel

Viscosity (cp)

2

Osmosis of capillary vessel
wall

k

c

5x 107

Pressure

Tissue P, (mmHQg)

Small artery P, (mmHg)

Small venous P, (mmHQg)

Tissue osmosis 11 ( mmHg)

Plasma osmosis I T, (mmHg)

-2~-5
30~35
10~15
4~6
28

Geometry parameters of
capillary vessel

Diameter D(um)

Space between (M)
Length L(um)

8.3+ 3.6

37.3+ 274
750~ 1950

Tissue interstitial

Density of tissue fluid  (kg/m?®)
Viscosity of tissue fluid  (cp)
Porous rate Q

1000
3.5
0.32~0.42




Software calculating velocity field is
FLUENT

Software dispersing space grid is
AMBIT

Calculation method is
DIFFERENCE
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3-D velocity field of the tissue interstitial fluid in the
Interosseous membrane
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The Interstitial fluid flow In some tissue have a
certain direction along the meridians
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flow velocity Is influenced by the vessel and tissue
pressure

—0o— po (2D Calculation)
—o— pv (2D Calculation)
—4— pa (2D Calculation)
—=— po (3D Calculation)
—e— pv (3D Calculation)
—4— pa (3D Calculation)

Increasing Vessel
pressure cause fluid
velocity up

N
ul

N
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Increasing tissue
pressure cause fluid
velocity down insensitively
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The meridians can be
blockaded by exterior
pressure in clinical
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The negative tissue pressure will increase the interstitial
fluid flow, this is the mechanism of cupping treatment in
TCM clinical
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Tissue pressure /mmHg
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\Resultswand Discussion

Mast Cells

Before acupuncture After acupunctu
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The interstitial fluid flow will generate a wall
shear stress In the surface of mast cells
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Wall shear stress will cause mast.cells
degranulation
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acupuncture Capillary
Histamine Jvessel oSmosSIS

_ Mast cells Increase
Connective _ release
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?gge fluid
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Slie _ 9her Cell
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effects e~ | transport in

| Active other Tissu
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Summary

Background
Biomechanics vs Mechanobiology

C

O 0O O

D In vascular tissue engineering

=D In cell mechanics

D In TCM

D In diagnosis and therapy of vascular diseases
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CFD + Web

BHRXESFYOKY b
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Client-side —

Server-side—

Client-side —

HWeb

CFD

ﬂ Web

— Engineering

— Bio-medicine
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