

Fluid Simulation on Cartesian Grid

Piao Binghu

Univ. of Electro-Communications

Background of Research Application of CFD

> Complex Geometries Moving Boundary

Difficultly of Grid Generation

Purpose of Research

Development of

- 1. Automatic Grid Generator
- 2. Numerical Method

Research Areas

Cut Cell Method AMR(Adaptive Mesh Refinement) Cartesian/Structure Hybrid Method Locally Body-Fitted Cartesian Grid

Image of Cartesian Grid

Simple Cartesian Grids

Cut Cell with Cell Merging

LMR(Local Mesh Refinement

Locally Body-Fitted Cartesian Grid

Diagonal Cartesian Grid

Numerical Algorithm

Computational Method

Finite Volume Method (FVM)Fractional Step MethodCollocate Grid Method

Governing Equations

Navier-Stokes Eq.

$$\frac{\partial u_i}{\partial t} + \frac{\partial u_j u_i}{\partial x_j} = -\frac{\partial p}{\partial x_i} + \frac{1}{\operatorname{Re}} \frac{\partial}{\partial x_j} (\frac{\partial u_i}{\partial x_j})$$

Continuity Eq.

$$\frac{\partial u_i}{\partial x_i} = 0$$

Fractional Step Method

$$\frac{u^* - u^n}{\Delta t} + \frac{1}{2} (3N_u^n - N_u^{n-1}) = \frac{1}{2 \operatorname{Re}} \nabla^2 (u^* + u^n)$$
$$\frac{v^* - v^n}{\Delta t} + \frac{1}{2} (3N_v^n - N_v^{n-1}) = \frac{1}{2 \operatorname{Re}} \nabla^2 (v^* + v^n)$$

Poisson Eq. For Scalar ϕ

 $\nabla^2 \phi = \frac{\nabla \cdot V^*}{\mathbf{A}}$

Correction of velocity and pressure

$$u_i^{n+1} = u_i^* - \Delta t \frac{\partial \phi}{\partial x_i}$$

$$p = \phi - \frac{\Delta t}{2\text{Re}} \nabla^2 \phi = \phi - \frac{1}{2\text{Re}} \nabla \cdot V^*$$

Collocate Grid

Cut Cell Based Cartesian Grid

Cut Cell with Cell Merging

Cut Cell With Merging Treatment

Point of Cut Cell

The value and gradient of ϕ must be expressed at cut faces.

Cut Cell without Merging Treatment P,V Ρ The value and gradient of ϕ must be expressed at cut faces.

Driven Cavity Flow

Numerical resutls

Flow around a circular cylinder

30D

Uniform flow

Sommefeld Reflection BC

Results (Re=200)

	C _D	C _L	St
Cut Cell	1.36 ± 0.04	± 0.67	0.20
Body Fitted Grid	1.34 ± 0.04	± 0.65	0.19
Roger et al. (1988)	1.29 ± 0.05	± 0.75	0.16
Rosenfield et al. (1991)	1.31 ± 0.04	± 0.65	0.20
Rosko (1954) exp.			0.19
Wille (1960) exp.	1.30		

Results(Re=1000)

	C _D	C _L	St
Present Method	1.51 ± 0.22	± 1.40	0.23
Cell Merging Method	1.65 ± 0.22	± 1.45	0.26
Body Fitted Grid	1.50 ± 0.20	± 1.37	0.25
Mittal et al. (1997)	1.53 ± 0.24	± 1.37	0.245

3D Finite Length Cylinder

3D Finite Length Cylinder

time=1

Cut Cell with Moving Boundary

Comparison with Exact solution

Numerical Grids

Comparison of flow rate

Flow around oscillating cylinder

Time histories of CD and CL

BFC with ALE

Comparison of CD and CL

	C _D	C _L	St
BFC	1.61 ± 0.22	± 0.71	0.20
CutCell	1.60 ± 0.23	± 0.69	0.20

Rotating Square Cylinder Re=1370

Comparison with Exp. results

Re=1370, ω=0.628)

Flow in a 2D Mixer

Flow around a F1

LMR and AMR Techniques

Flows in Driven Cavity

AMR for a Cylinder

AMR on Track

AMR on a Track

AMR on a Car

AMR on Car

Cartesian/Structure Hybrid

Cartesian/Structured Hybrid Grid

LBFCGM (Locally Boundary Fitted Cartesian Grid Method)

BFC generating based Cut Cell

LBFCGM for Thin Body

Treatment at connect cells

Numerical Results at Re=200

	C _D	C _L	St
Present Method	1.34 ± 0.04	± 0.62	0.21
Cell Merging Method	1.31 ± 0.05	± 0.66	0.20
Body Fitted Grid	1.34 ± 0.04	± 0.65	0.19
Roger et al. (1988)	1.29 ± 0.05	± 0.75	0.16
Rosenfield et al. (1991)	1.31 ± 0.04	± 0.65	0.20
Rosko (1954) exp.			0.19
Wille (1960) exp.	1.30		

Early Stage of the Wake

Re=40(T=12)

L/D Re=40

a/D, b/D Re=40

Re=3000(T=2.5)

L/D Re=3000

a/D,b/D Re=3000

Flow around Two-Cylinders

30D

CD and CL (Re=100, S/D=2.5)

CD and CL (Re=100, S/D=5.5)

Comparison of results (Re=100)

S/D			First cylinder	Second cylinder
		CD	1.230 ± 0.001	-0.098 ± 0.001
	Present	CL	0.000 ± 0.001	0.000 ± 0.003
2.5		St		
	S. Mittal et	CD	1.271 ± 0.0	-0.075 ± 0.0
	al. (1997)	CL	0.000 ± 0.0	0.000 ± 0.0
		St		
5.5	Present	CD	1.334 ± 0.014	0.849 ± 0.150
		CL	0.000 ± 0.404	0.000 ± 1.621
		St	0.165	0.165
	S. Mittal et	CD	1.433 ± 0.015	0.952 ± 0.164
	al. (1997)	CL	0.000 ± 0403	0.000 ± 1.741
		St	0.168	0.168

2D Inlet Flow of a Fluidic Flow Meter

The Vectors

3D Inlet Flow of a Fluidic Flow Meter

Inlet Flow of a Fluidic Flow Meter With Complex Geometry

Tube banks with tandem arrangement

Tube banks with tandem arrangement

Tube banks with staggered arrangement

Tube banks with staggered arrangement

Moving Boundary Problem

Moving Boundary Problems

Thank You!