

Numerical Modeling of Oxygen Precipitation Behaviors in Semiconductor Silicon Wafer

Ping Xin and Toshio Abe Toshiba Ceramics Co., Ltd.

G Outline

Background Wafer annealing process Modeling for oxygen precipitation Numerical analyses **Summary**

Background

LSI industry needs Czochralski Silicon crystal

Background

Needs for a silicon wafer

Cross section of silicon wafer

diameter

Oxygen precipitates

Wafer Annealing Process

Cross section of an annealing furnace

TOSHIB/

Out-diffusion of oxygen from wafer surface
 Precipitation of resolved oxygen in bulk wafer

Oxygen atoms 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Out-diffusion of oxygen from wafer surface

TOSHIBA

 $D\frac{\partial^{-} c}{\partial x^{2}},$ ∂C ∂t

Out-diffusion of oxygen from wafer surface

Wafer surface

$$-D\frac{\partial C}{\partial x}\Big|_{x=h/2} = k(P_{eq} - P_s)$$

Oxygen con-Centration Cs

TOSHIBA

Equilibrium vapor phase pressure Peq

Si wafer

Real partial pressure of oxygen Ps

Modeling for Oxygen Precipitation Oxygen precipitation

dissolution process

Growth process

Oxygen precipitation

TOSHIB/

$$\frac{\partial^2 C}{\partial r^2} + \frac{2}{r} \frac{\partial C}{\partial r} = 0$$

Solution of the equation

$$C = (S - C_p)\frac{r_0}{r} + C_p$$

S: Solubility of O in Si
Cp: O concentration at precipitate site
D: Diffusivity of O in Si
Ω: molecular volume of precipitate

Variation rate of the precipitate

$$\frac{\partial r_0}{\partial t} = \Omega_p D(S - C_p) / r_0$$

Morphology of oxide precipitates

Octahedral shape

Assumption in model: Spherical shape

TEM image of oxide precipitate

Diffusivity and Solubility of O in Si

$$D = 0.13 \exp(-58.4 kcal / mol/_{RT}) \text{ cm}^2/\text{s}$$

$$S = 9.0 \times 10^{22} \exp(-35.1kcal / mol/_{RT}) \text{ atom/cm}^3$$

J. C. Mikkelsen, Jr., MRS, Pittburger, 1986, 19.

TOSHIBA

Behaviors of precipitates different depth

TOSHIBA

Effect of annealing time on precipitates

Infrared tomography images of silicon wafers

1 hour annealing

4 hours annealing

TOSHIBA

Behaviors of inhomogeneous precipitates

TOSHIBA

Behaviors of inhomogeneous precipitates

Effect of initial oxygen concentration on DZ depth

Summary

A numerical model concerning behaviors of oxide precipitates in silicon crystal grown by Czhochralski technique has been established on the basis of diffusion theory.

Simulation results of the annealing processes for silicon wafers with present model show good agreement with observations. Annealing processes can be designed with present model.